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r\umerical algorithms for a Lagranaian treatmcot of incompressible hydrodynamics 
with free surfaces are developed and applied. The method centers about the USC of a triangui- 
ar general-connectivity finite-diffcrcnce mesh. The added fiexibility arisiny from this trianpul- 
ar mesh permits accurate long-time solutions of complicated flows with shear and waves in 
free-surface problems. The techniques discussed here are applied to nonlinear free-surface 
waves and to unstable shear flow beneath a free surface in two dimensions. 

1. INTRODUCTION 

Lagrangian methods offer the most natural approach to transient hydrodynamics 
problems which contain free surfaces, interfaces, or sharp boundaries. In practice, 
their use in numerical solutions has generally been restricted to “well-behaved” Bows, 
Gnce shear, fluid separation or even large-amplitude motion produce severe grid 
distortions. The distortions arise From the migration of mesh points which were 
formerly neighboring but which have crossed or become separated in the flow. 
Numerical solutions of the physical equations differenced over such a mesh quickly 
fail because of the inaccuracies inherent in approximations which ignore mesh-point 
rearrangement and grid distortion. This problem is solved by the implementation of a 
general-connectivity grid in which local mesh reconnections are made whenever the 
grid distorts sufficiently to affect numerical accuracy and convergence. 

‘1 he techniques described in this paper involve the use of a Lagrangisn, finite- 
difference mesh of connected triangles to rcprcscnt the fluid motion, the various 
interfaces, and the free surfaces. This approach is a fruition of efforts carried out at 
NRL and elsewhere during the past few years. Some of the basic concepts were 

developed by Crowley [I] using the code FLAG. Our own work has concentrated 
on the free-surface and physical consistency aspects of the problem. Early NRL 
efforts centered on I,INUS 2 [2-41, a two-dimensional MHD code with axial 
symmetry. Attention more rcccntly has turned toward solving free-surface problems 
in naval hydrodynamics 15-71. 

The major practical problem with 12agrangian methods using a rectangular mesb 
[S-lo] arises from the inflexible connectivity of the various mesh points [ll]. In 
complicated and strongly shcarcd flows, where one element of fluid may become 
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widely separated from a nearby element, the usual Lagrangian treatments break 
down because a simply structured rectangular mesh becomes too severely distorted 
to allow an adequate numerical representation of the fluid flow. When the mesh 
becomes SO distorted that no greater Lagrangian motion can be permitted, a process 
of continual rezoning amounts to a form of numerical diffusion. Thus the usual 
Lagrangian treatments are capable of extending linear models significantly into the 
nonlinear regime but have difficulty providing a satisfactorily accurate long-time 
representation of highly complicated flows bordering on turbulent phenomena. 

Another drawback of such approaches is a difficulty in representing complicated 
boundaries and structures because of the limited topology of the mesh. It is often 
necessary to require greater resolution simply to obtain a satisfactory initial grid. 
Rectangular mesh approaches also appear to suffer a serious “even-odd” or compu- 
tational-mode instability which must be overcome by some form of added numerical 
damping [8, 91. This damping destroys the reversibility of the algorithm and limits 
its usefulness for high-Reynolds-number flows even though some care has been given 
to developing damping algorithms which minimize this nonphysical diffusion. 

A triangular-element mesh has several advantages. The grid can be restructured. 
Individual triangles and sides can be bisected or rearranged to give new grid structures 
which better represent changing fluid flows. Since the number of triangles meeting at 
a vertex is variable, increased accuracy in one region of the flow does not force un- 
necessary resolution in other areas of the flow. This versatility also permits both 
regular and irregular tessellations of the X-Y plane with triangles. Triangles, unlike 
rectangles, can symmetrically cover a sphere without cusps or other local represen- 
tation irregularities. Thus free surfaces, complicated interfaces, and boundaries of 
immersed objects can be represented accurately and economically. 

The triangle is a much less ambiguous structure than a rectangle or higher-order 
polygon and hence interpolations and integrals are usually simpler to perform. 
Moreover, the even-odd problems of rectangular schemes appear to be absent, or at 
least greatly subdued, in the triangular representation. With three-sided figures 
(rather than four sided), there is no unambiguous labeling of grid points as even and 
odd. A vertex which is one point removed from its neighbor along a particular path 
will be two points removed by another. This does not mean that an even-odd problem 
cannot occur, only that it is not a topologically natural mode of instability and hence 
appears considerably slower growing than its rectangular-mesh counterpart. 
Experience with the SPLISH code supports this; a reversible algorithm, or at least 
a very weakly dam.ped one, is feasible using the Lagrangian triangular mesh approach 
[5-71. 

There are also problems with triangles. A general-connectivity triangular mesh 
has nontrivial bookkeeping problems associated with the grid and its connections, 
and the basic cells of the fluid dynamic system. Furthermore, numerical experience 
with triangles is much more limited than experience with rectangular meshes. The 
differencing of the hydrodynamic equations in general triangular systems requires that 
especially good attention be paid to the spatial derivative terms which are needed. 
There are, as well, some intrinsic numerical complications in triangular systems. 
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The major one, discussed in detail in Section 3, is the counting of equations and free 
unknowns. This difficulty can be argued to be the price we pay for.the relative sup- 
pression of the “even-odd” or “computational” modes observed in more standar 
rectangular approaches. 

In this paper we restrict ourselves to the study of systems in which the fluid is 
inviscid and incompressible but has variable density. The conservation integral 
approach and definitions of divergence we employ, however, allow a natural extension 
to compressible systems. We also restrict consideration to problems in which the 
gravity is constant and directed in the negative 9 direction. These are not necessary 
restrictions but simplify the analyses and allow the full spectrum of problems of 
current interest to be solved. The basic equations of the system are: 

and 
Q.V=O, (2) 

where the fluid density p, pressure P, and velocity V are assumed to vary only with X, y 
and t. Equation (2), incompressibility, removes the sound waves. We will assume that 
along free surfaces P == const or is given. The effect of the additional constraints of 
mass, momentum, and energy conservation are discussed below. 

The basic discussion of triangular grids and connection of grid vertices, triangle 
sides, and triangle volumes is found in Section 2. Tessellation of the plane is considered 
and the representation of complicated surfaces and interfaces by a triangular mesh Is 
described. Concepts and a notation for this triangular mesh representation are 
developed and the vector aspects which can be utilized numerically are given. 

Section 3 is devoted to describing methods for integrating the equations of incom- 
pressible hydrodynamics. A counting problem encountered in some schemes is 
described and the motion of the mesh is discussed. Two essentially reversible 
algorithms are possible, leapfrog and centered implicit, but both require iteration, 
Each can be coupled to any of the several possible spatial treatments. Reversibility 
is desired because it reflects a property of the inviscid physical equations, and if it is 
demanded of the algorithms, major sources of numerical diffusion can be eliminated. 
Cartesian P-V and Z/J-~ formulations have been coded and tested. In this paper 
emphasis is placed on the P-V algorithm because of its more general boundary 
conditions, although both versions exhibit good accuracy and convergence. We also 
discuss briefly questions of mass, momentum, and energy conservation which enter 
into the code. 

Section 4 treats the important aspects of adjusting and reversibly restructuring the 
mesh. It describes methods of initializing the grid and various techniques to modifjl 
the grid to better follow the Lagrangian motion of the fluid. One of the most important 
aspects of this restructuring is that strong shear flows can be followed for long times 
with minimal numerical diffusion. 

Section 5 is devoted to an extensive treatment of nonlinear free-surface waves in 
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which detailed comparison with theory is made. Section 6 applies the full numerical 
formalism with reconnections to the problem of a Kelvin-Helmholtz unstable shear 
flow beneath a free surface. A short summary is contained in Section 7. 

2. TRIANGULAR MESH LOGIC 

In this section we describe some of the features of triangular meshes and the 
representation of the vertex interconnections. The techniques for adjusting and 
restructuring the mesh during the actual course of a calculation will be attacked later 
in Section 4. Figures la and b show a section of a triangular mesh representation with 
an interface of a fluid of type I connected to a fluid of type II. In Fig. la a particular 

a) 

b) 

I 

FIG. 1. A section of a triangular mesh including an interface and showing a vertex cell. 
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triangle j is shown in heavy lines. Three vertices, VI , V2 , and V, , are connected 
consecutively by sides S, , S, , and S, . The direction of labeling around each triangle 
is taken to be counterclockwise and the 2 direction is out of the page. Since the mesh 
can be irregularly connected, an arbitrary number of triangles can meet at each vertex. 

It is convenient to define a cell surrounding a. vertex as shown by the shaded region 
surrounding vertex 3 in Fig. lb. The borders of such vertex-centered cells are deter- 
mined by constructing all of the side bisectors for each triangle. The point of inter- 
section of the side bisectors, the centroid of the triangle, is its center of gravity 

and this is true in I’-z as well as Cartesian (-X-J)) coordinates. The three side bisectors 
divide the triangle into six equal-area subtriangles and, therefore, each of the t!?ree 
vertex celis receives one-third of the area of the triangle. 

Any computational representation of such a triangular mesh must record ali 
important aspects of the mesh interconnection. If each vertex, each side: and each 
triangle is numbered, lists of interconnections can simply take the form of an oldered 
series of integers which can be stored quite compactly in a computer. It should be 
clear that the arrays of quantities used to define the grid and its motion involve the 
storage of only local information. There is no global representation of the mesh in 
general, although for some specific geometries such a global representation may be 
possible. Connection paths between vertices can be determined only by searching 
sequentially through neighborin, 0 vertices. The lack of a global representation in 
which the vertex numbering denotes a corresponding relative spatial position greatly 
complicates implicit calculations. Poisson’s equation, for example, must be solved by 
iteration, and explicit time and space derivatives are the best that one has any right 
to hope for. Nevertheless, using the incompressible formulation ensures that time-step 
limitations due to acoustic transit times are not a problem. 

We will use the following notations and conventions. The subscript i will generally 
be used to label vertices and the subscript j will generally be used to label triangles. 
Thus xi denotes a sum over all vertices and Cj is a sum over triangles. The sum over 
all -three vertices of triangle j is denoted by Cici) where the symbol is read ‘“the sum 
over vertices i around triangle j.” Similarly a sum over triangles around a cenlral 
vertex c would be denoted by CjcC) . The notation Ci(cj is the suLm over vertices i around 
a central vertex c. In such sums the sequence of vertices is assumed to be counter-- 
clockwise around the central vertex. Thus the quantity A i+l,2 can be used to represent 
the triangle area of the triangle with vertices (c, i, i + I>. Similar L,t+1!2 appearing in 
&, would be the length of the side radiating from vertex c and separating triangle j 
from triangle j + I. 

In Figure f the area of triangle j is given by 

2Aj = (r3 - r,) % (rl - r,) . i 

and thus h, , the height of vertex 1 above the opposite side (&), is simply 

h;l = ;(r3 - r,)i/(2A,j. 
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The area is a signed quantity and will be positive when the vertices are sequenced in 
counterclockwise order around the triangle. In fact, it is often convenient to use the 
sign of the area to test whether or not a triangle has inverted during the flow, i.e., 
whether vertex 1, for instance, has passed through side 2. 

As illustrations of these formulas and notation, the area of the cell centered on 
vertex i is 

Ai = 1 QAj (5) 
j(i) 

and the area-weighted average cell velocity Vi is given by 

(6) 

Of course, all the sums may have to be modified near a wall, an interface, or a free 
surface. 

If a scalar functionfis specified at each vertex and is assumed to be piecewise linear 
within each triangle, the vector gradient off (constant throughout the triangle and 
discontinuous at the triangle sides) is given by 

2 x (r3 - P..>i fi r2> + ji 2 x (rl - r3) +f 2 x (b. - 4 = 
2Af 2Ai 3 2Aj 

f x (r.i--l - ri+l) 
2Aj ’ (7) 

For a vector field (Vi} defined at all the vertices, the z component ot the curl and the 
divergence of the vector are also defined for the triangles as follows: 

44 = I( V x V); * dA = 4 c (Vi+l + Vi) . (rifl - r,), (8) j i(j) 

A,(V - Vjj = I( V * V)j dA q = Q 1 (Vi+1 + Vi) X (rifl - ri) . 1. (9) 
j i(j) 

Equations (7)-(g) detine various quantities at triangle centroids. The corresponding 
quantities can usually be defined at the vertices of the finite-difference mesh by area 
weighting the triangle quantities as in Eq. (6). 

The converse definition is also valid. A vector field ( Vj} may be defined on triangles, 
where the Vj are constant throughout triangles and discontinuous at the triangle sides. 
For example, the triangle velocity Vj is given by 

Vj s (v x #)j = C +i (ri-12if,ri+l) , 
i(j) 3 

where (#J is the vertex-defined velocity stream function (only a single z component 
in two-dimensions). 
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Such a representation is appropriately both unique and orthogonal. By uniqueness 
we merely mean that the triangle vector equation 

uniquely relates V and (4, &) ( assuming well-posed conditions on # and ZJJ~ at the 
system boundaries where the derivatives are not defined). Given # and & on vertices, 
Eqs. (7) and (10) allow an unambiguous determination of W at the triangle centroids. 

By orthogonal we mean that the numerical finite-difference operators satisfy the 
continuum orthogonality conditions 

v x 04 = 0, v . (V x y!JJ = 0. (12) 

The curl and divergence operators in Eqs. (12), of course, act on triangle quantities 
since C# and $J are assumed to be vertex quantities as above (but are otherwise arbitrary 
scalar fields). The second of Eqs. (12), for example, can be written in our finite- 
difference notation as 

(13) 
x [&(re - ri+lj + #.i+l(ri - r,j + $e(hi+l - rijl . (-2)~ 

This is just the flux of V x Z,!J (constant over triangles) out of cell c. G!early the & 
coefficient is zero term by term because of the cross product. The Z& and &+r terms 
have a.s coefficients +$ and -+, respectively, because (ri - r,) x (rl:+l - rg) = 2Aiil/E. 
Thus Eq. (13) is identically zero when summed around an interior vertex. By a virtually 
identical argument the first of Eqs. (12) can be demonstrated to be identically zero. 

Therefore, taking the divergence of V (Eq. (11)) expunges the z,!J~ term. Thus 

x (ri+l - ri) . $, 

2 

The second line of Eq. (14) is the finite-difference form of the V’ operator and Eq. (14) 
is a triangular-grid Poisson equation. For a vertex on a square mesh, the formula 
reduces to the usual five-point weightin g. Note that the coefficient of the CC term is 
-Cicc) 1 ri.kl - ri /e/4A,+l,,e an d is always negative. The coefficient ai of the qi term is 
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Equation (15) reduces to 

ui = *[cot &+lpB + cot 6&l,*], (16) 

where &+rj2 and S,-1.., are the angles in the (i + g)th and (i - &th triangles opposite 
the line from c to i. If the sum of 6,,1:, and 6i-1j2 is less than 180” for each i, the 
matrix is diagonally dominant. Hence, normal iterative procedures for finding $ by 
inverting Eq. (14) work well. If for any i, 8i+l;2 + 6,-1:, > ISO”, the line from i to c 
can be recormected and diagonal dominance preserved. 

An equation similar to (14) can be constructed, except for sign, by taking the curl 
of Eq. (I 1). Then 

A,/;V x V:? = V x (V x I&) (17) 

allows the determination of zJi from V. 

3. FINITE-DIFFERENCE APPROACHES 

Given the mesh and all its interconnections, we would like to associate various 
physical quantities ot interest with the vertices, the sides, or the triangles, Since it is 
the mesh of vertices which determines the structure of the grid, it is natural to assume 
that an array of positions is recorded for the distinct vertices in the problem. To 
update these positions, it is necessary to know the Lagrangian velocity of the vertices. 
Therefore, we will also assume that the velocities of the vertices can be found in such 
a way that integration of the equations of motion for the vertex position is possible 
using these velocities. If the velocities are known at the vertices, a piecewise linear 
velocity field can be constructed throughout the entire mesh. 

Unfortunately, the first derivatives of this representation are discontinuous and the 
linear representation ensures that the incompressible equations of motion cannot be 
satisfied identically within a single triangle except for a few simple cases such as solid 
body translation. ln fact, a real fluid element which is initially triangular would be 
very shortly transported in a real fluid to a figure with nonstraight sides. These 
deformations of the triangle sides are a measure of the error in the numerical methods 
we are proposing and are fully equivalent to the errors made in neglecting the defor- 
mation of rectangle sides in a topologically rectangular representation. 

The incompressibility inherent in Eq. (2) cannot be applied to the triangles them- 
selves for another, more basic, reason. The x and 3: values of the vertex positions7 the 
variables available to ensure conservation of triangle area, are fewer in number than 
the constraints. This is the previously mentioned “counting problem.” For rectangular 
grids a one-to-one correspondence can be made between quadrilateral areas and the 
vertices; for example, associating a quadrilateral with its lower right vertex. For a 
triangular mesh, particularly one that allows reconnections, no such correspondence 
exists. 

In a quadrilateral mesh, the one-to-one correspondence fails only at the boundaries. 
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The extra vertex variables at the boundaries are available to satisfy the boundary 
conditions. For a triangular mesh 

Nt 5 2N,; i18) 

there are less than two triangles per vertex. A one-to-one correspondence is approached 
only for the very restrictive, and not too useful, case for which all vertices lie on the 
boundaries, when Ivt = N, - 2. For most cases of interest the number of boundary 
vertices is small compared to the number of interior vertices, and the ratio is much 
worse, N* N 2N, . (See the Appendix for details.) 

Although there are always fewer than two triangles per vertex? the number of 
variables left free after all of the constraints have been satisfied are extremely few in 
number. In this case, after all triangle areas are conserved, the x and J positions 
available could not fulfill boundary conditions or be used to represent the flow vortici ty 
with acceptable accuracy. 

Once the idea of conserving triangle areas has been abandoned, the next logical 
attempt is to conserve vertex-centered cell areas exactly. This is attractive since he 
cell area (V 1 ‘1~ and the cell rotation (V x V) are both known for each vertex and 
there are correspondingly two variables for each vertex, I,, and C’, i which are free 
to satisfy these constraints. A great deal of effort has been invested in this approach 
with mixed results. Unfortunately the effective Poisson-like equations which result 
are nonlocal and convergence of the iterations is correspondingly slow. While there 
is no counting problem with this approach, an allied topological constraint crops up 
when more than six triangles meet at a vertex. 

We have been able to show that a purely local rotation conserving ail cell areas is 
not generally possible where seven or more triangles meet at a vertex (see 
rhe Appendix). In other words, more than just the nearest-neighbor vertices must 
have nonzero velocities to conserve all cell areas; purely local vortices are not generaily 
possible and this gets reflected in the convergence rate ctf the iterations, Similarly. 
a purely vorticity-free local expansion is not generally possible when more than six 
triangles meet at a verte?;. This constraint is not entirely prohibitive, but the cost of 
exact area and vorticity conservation rvith momentum conservation is high in terms 
of computer time, so faster, less demanding aigorithms are required. 

These superhcially attractive approaches have been mentioned briefly only to 
prevent (hopefully) as many false starts on the part of our readers as we have under- 
gone. We will now indicate two distinct approaches which are successful; a 4-t and 
a P-V formalism. Both define velocities as triangle-based quantities, and derive vertex 
velocities from Eq. (6). This obviates the counting and mesh problems mentioned 
a.bove through the introduction of more variables. 

The first method relies on the orthogonality of the curl and gradient operators 
discussed in the previous section. We force the velocity, now defined on the triangles: 
to arise from a stream function according to Eq. (10). Such a flow is divergence free 
by construction as described earlier; the flux into or out of each vertex cell is identically 
zero. In fact, such a flow, as shown in Fig. 2 for one vertex and its nearest neighbors, 
is also divergence free on each triangle. Since Vj is constant throughout a triangle 
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Sl ‘REAMLINES 

FIG. 2. Streamlines!of a flow field calculated from a vertex-centered stream function. V is constant 
throughout each triangle. 

and since the normal component of V is continuous across all triangle sides, the 
flow field described by V = V x z,A~ allows no accumulation of fluid in a triangle or 
loss of material from a triangle. Figure 2 shows how this can be by displaying actual 
stream lines from such a flow. These stream lines are closer together where the flow 
is faster and are continuous crossing triangle sides even though their direction 
changes. 

The introduction of triangle velocities therefore makes it possible to define a flow 
which is divergence free on triangles. Since the triangle velocities cannot be used to 
advance vertices, the area-weighted vertex velocities must be used. The triangle areas 
must necessarily change when the vertices are advanced, and only the cell areas can be 
conserved. What remains is still very attractive physically. If the grid is held fixed, the 
density of Gedanken marker particles in the instantaneous flow field remains locally 
constant, while advancing the vertices leaves cell areas unchanged. This is the 
physically meaningful expression of incompressibility which is sustained where triangle 
velocities are the basic physical quantities. 

In either formulation the incompressibility assumption forces a physically nonlocal 
character on the flow and this gets reflected in the numerical necessity of iterating a 
Poisson-like equation with appropriate boundary conditions. In the $4 form, the 
vorticity 5 is advanced at each cell during each time step and then V x (V x $) = 5 
must be solved for the velocity stream function #. The velocity divergence is zero by 
construction. In the primitive P-V formulation, the divergence of velocity is zero 
because P is chosen to satisfy V . (V . VV) = -V . (l/p) VP. Changes in vorticity 
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are zero by construction. In either case the complicated grid connections virtually 
preclude a fast direct solution or even a globally implicit iteration. In solving these 
equations we have been using a simple point-relaxation technique with a home- 
grown acceleration formula. We have found, however, that simple extrapolation using 
the two previous values of the quantity being iterated (P or 4) makes the biggest 
improvement. Extrapolation reduces the residual by one to two orders of magnitude 
before itelation even begins. Even more important is the fact that extrapolation is 
most accurate for the long-wavelength components of -the solution desired, the 
slowest to converge under iteration. Therefore, using extrapolation not only reduces 
the initial residual appreciably, it effectively increases the rate of convergence of the 
iteration itself. 

The actual temporal integration scheme chosen for either formulation is reversible 
because the physical equations being solved are reversible [lo]. Reversibility usually 
means that artificial numerical damping is absent and that higher-Reynolds-number 
flows can be treated accurately. Conversely, the total absence of numerical damping is 
often accompanied by an even-odd or computational mode of numerical instability 
in which decoupling of the finite-difference mesh. variables occurs in some obnoxious 
manner or another. Previously we have argued that our triangular-grid algorithms 
minimize the virulence of this problem and in Sections 5 and 6 we will show several 
undamped reversible calculations. For now we concentrate on defining reversible 
algorithms since damping can also be added where and when needed. 

There are two easy ways to achieve the desired reversibility-using a leapfrog x--v 
integration in time and using a centered implicit x-v integration. Either approach 
can be applied with either the 4-5 formulation or the F-V formulation of the basic 
equations. The choice appears to be a matter of convenience although we have used 
centered implicit in the final versions of both formulations. 

Since the flow is Lagrangian, we can use the followiag leapfrog time-integration 
template: 

Vl(t + $3) = V,(t - tat) + St a,(t, {X], etc.)? 

X<(t + St) = X,(t) + St vi(t $ $St). 
(19) 

The subscript i labels the vertices (or the triangle centroids). The important points 
are that the acceleration terms (ai} can be calculated at time t using positions and 
other quantities whose values are already known at time t and that this “leapfrog” 
integration is explicit as expressed above. Alternately the centered implicit formulatioa 
can be used. 

Vi(t + St) = V,(t) + St a((1 + @t), 

qt + St) = xi(t) + gt[vi(t) + V,(t + St)], 
(20) 

where the accelerations a,(t + *St) are calculated either as the outer average 
+[ai(t) -+ ai(t + St)] or the inner average a,(t + @t, ${Xxt(t) + X,jt + St)>, etc.). 7he 
formulation of Eqs. (20) is clearly reversible and, insofar as the velocities Vl(t f 8~) 
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are not known a priori, the formulation is implicit and must be iterated. Since we 
are iterating anyway, this extra iteration imposes no great hardship. Furthermore, 
the implicit nature sometimes means that longer time steps can be taken stably. 

We will illustrate the 4-5 method using the leapfrog method. We start knowing the 
positions of the vertices Xi at time t and the vorticity at these same vertices at time 
t - $St. We also know the parallel velocity of any free-surface vertices Vi at time 
t - +St. Since the pressure is constant at the free surface, the free-surface boundary 
condition can be deduced from the component of Eq. (1) resolved parallel to the free 
surface. If + denotes a unit vector tangent to the free surface, then 

dV 7 = -gjy . ?f, 
df (21) 

Therefore the new free-surface velocities have a parallel component which is 

v,i(t + @f) = r/;t(t - &3t) - St gjl . ‘;(t). w 

This is reversible and the vorticity can likewise be advanced to &(t + &Tit) reversibly 
using Eq. (17). Of course, the vorticity is conserved in the Lagrangian frame unless 
Up # 0. When Vp f 0, the pressure field has to be determined, a point we return 
to shortly. 

The next step is to calculate 9 from the usual equation V x (V x #) = 5. Here 
we encounter a snag; a spatial grid at time t + +St is required if &(t + &St) is to be 
found. We do this in SPLISH, our Cartesian code, by calculating Xi(t + $9) as the 
average of the new and the old grid positions. Of course, this is reversible provided 
we iterate exactly as in the implicit formulation. Once f&} has been found the triangle 
velocities at time t + &St can be calculated using Eq. (10). Forming the vertex area- 
weighted averages of Vi from Eq. (6) gives {Vi(t + &St)} which can be used to advance 
the vertex positions Xi from t to t + St. 

The boundary conditions in the Poisson equation are simple on a solid wall; 
# = const. On the bottom of a fluid layer periodic in X, we set ZJ = 0. If a lid were 
placed on the top of the fluid, the constant value of # at the top could be different 
from the value on the bottom. The difference in the two constants would be the rate 
of flow across a vertical surface from the top to the bottom. This rate is independent 
of the X position of the imaginary surface because the fluid is incompressible. 

The component of acceleration parallel to the free surface is known for a free- 
surface vertex. The normal gradient of #, area weighted to the free-surface vertices, 
must give the known vaiues. Since the point-by-point iteration of the interior # points 
can be performed, the normal gradient can be adjusted by appropriately choosing the 
free-surface z,4 values. An explicit evaluation of these values is possible, just as with 
the interior points, but we have chosen an implicit formulation of this boundary 
condition which couples all of the surface 4 values in a tridiagonal system. In addition 
to taking the interaction with neighboring surface vertices into account, this method 
speeds convergence over the whole mesh because two widely separated vertices can 
“communicate numerically” very quickly if they are reasonably close to the surface. 
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When an internal cavity is present in the fluid due to the existence of a bubble or to 
cavitation, the 4-5 boundary conditions are greatly complicated. For example; the 
formation of a bubble has to move the free surface upward to conserve area. Since 
&,!J,‘?T along the surface is the velocity normal to the surface, the average normal 
velocity over a length L of surface, (l/L) j’f (a#/?~) dl, - must be nonzero. in a periodic 
system the formation of a bubble or cavity thus requires 4 to be nonperiodic even 
though the derivative must be. In other vvords, $J must have a branch cut whose jump 
varies with the rate of expansion or contraction of the bubble. While this nasty 
complication is not insurmountable, it certainly requires the calculation of a se& 
consistent pressure field. Since the fully nonlinear source term for internal waves, 
as mentioned earlier, also requires this pressure, a primitive solution method usn~g P 
and V has definite advantages over the I/J-~ formulation even though it might appear 
to be a little more complicated. A further argument in favor of the P-V formulation 
arises when we consider the eventual generalization to three dimensions. Then + is a 
true vector having three components, and three Poisson ‘equations must be solved. 
In the P-V formulation P would still be a scalar, so only one Poisson equation needs 
to be solved even in three dimensions. 

Because of these advantages the P-V formulation has been the major focus of 
our work. All the tests and examples cited below will use tl-& method, and all further 
discussion will refer exclusively to the primitive formulation. However, it should be 
stressed that the 4-i: formalism has also been coded and tested: and it has exhibited 
very good accuracy and convergence. Although its utility is more restricted, on 
certain flows it is the more preferable of the two formalisms because of its simpler 
structure and faster speed of execution. 

Our P-V formulation has Pi , Vj , and Xi , all specified at times t, t + St, t + 281,. ,. . 
Using a split-step algorithm [lo], we integrate the velocities forward half a time step, 
advance the grid one full time step, and then advance the velocities forward the other 
half time step. 

vi!” = h(V,” + Vin), 

0;” = R((X”), IX,“}) . V;‘“, :zq 

The velocity Vi” appearing in Eq. (24) is area weighted from (V,“> from Eq. (27) as 
calculated at the previous iteration. Equations (23) and (27) contain the evolution of 
{Vi) according to the Lagrangian equation of motion. Equation (26) is the numerical 
reflection of the fact that triangle velocities must rotate and change in magnitude as 
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the grid rotates and stretches. The transformation R is linear and given by the 
following three scalar equations: 

ty’ . (X,” - J&n) = vy . (X,0 _ X,0), 

,y . (X,” - x2n> = ,y . (X,0 _ X,0), (28) 

ly . (X,” - &fi) = vy . (X,0 _ X,0). 

This transformation ensures that the vorticity integral, calculated about any interior 
vertex, is invariant during the displacement of the grid. Clearly, Eqs. (28), and hence 
Eq. (26), are fully reversible. It is gratifying, furthermore, that the three equations 
are not linearly independent since only two components of p:‘” need to be determined. 

As has been established previously, the VP and gravity terms cannot alter the 
vorticity either since V x VP = 0 and gravity is a constant. Only the physically 
correct variations of l/p$ can cause changes in vorticity, exactly as they should. Thus, 
the entire algorithm advances the positions of the vertices and the triangle velocities 
reversibly while evolving the correct vorticity about every interior vertex. The pressures 
(P,“) at f + St are derived from the condition that the new velocities (V,“} should be 
divergence free at time t + St. Thus, From Eq. (27) we derive the pressure Poisson 
equation by requiring (V . Vj”), = 0. We obtain the pressures {Pi”] such that 

+ v . 1 vpin) 
i Pi 

= (V . p;“), 

The right-hand side, which can be evaluated at each iteration explicitly, is the exact 
numerical analogue of the V . (V . WV) term which arises when the divergence of 
Eq. (1) is taken. 

Solving Eq. (29) iteratively for {Pin) completes the calculation of the time step. 
The boundary conditions on P for Eq. (29) are very similar to those described for the 
4-c formulation earlier. At a free-surface P = const (P = 0 at the top and a constant 
value within a bubble, determined by the bubble volume, surface tension, etc.). At the 
bottom or on a wall aP/an must be chosen so that the velocity normal to the wall is 
zero. Thus, an implicit tridiagonal system can be developed linking all pressures on 
the wall (or bottom) to the nearest-neighbor interior values. 

Since pressures at the boundaries are all specified through the boundary conditions, 
the velocities around the partial cells at these boundaries cannot be kept divergence 
free by iterations over the boundary pressures. There are at least two methods for 
controlling the divergence at boundaries. The boundary cell areas can be apportioned 
uniquely to the cell areas beneath the surfaces, as shown in Fig. 3. This construct 
permits the pressures near boundaries to adjust for divergence-free flow in the 
expanded cell areas, ensuring that the divergence can be iterated to zero throughout 
the entire fluid. Alternatively, the cells are not altered, but at the free surface the 
vertices are moved to keep boundary cells divergence free. The. first method is used 
throughout this paper. 
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FIG. 3. Enlarged cell areas near a boundary. Btxausc pressures at boundaries are fixed by bound- 
ary conditions, the pressures of vertices adjacent to the boundary are used to keep the additionai 
surface areas divcrgencc free as well. 

The major advantage of using a general-connectivity triangular mesh is the 
flexibility which it permits to follow complicated Aows with a Lagrangian grid OVCI 
long times. To make full use of this flexibility requires that we provide for several 
types of adjustment and local mesh restructuring to maintain the uniformity and 
accuracy of the discrete mesh representation. A mesh adjustment is a nonphysical 
movement or adjustment of the position of one or more vertices which is accom- 
plished without changing the connectivity of the mesh vertices. These adjustments 
are designed to simplify and regularize the mesh and result in the cfrective transfer 
of fluid across triangle boundaries. 

A restructuring of the mesh, on the other hand, does not generally involve movement 
of any of the vertices but does include many sorts of triangle and side additions, 
reconnections, and subtractions. In a sense, adjustment and restructuring are ortho- 
gonal proccdurcs-one leaving the vertex positions unchanged: the other leaving the 
mesh connectivity or topology unchanged. Since restructuring involves the changed 
position of a side, it also can involve the nonphysical flow of fluid across triangle 
boundaries. 

Roth adjustment and restructuring represent departures from a purely Lagrangian 
description and hence threaten to introduce unwanted numerical diffusion into the 
system. To minimize the diffusive and other errors, it is necessary to pay strict 
attention to mass and momentum conservation and to leave undisturbed the vertices 
and triangle sides lying along boundaries, surfaces, and intcrfdces. There are a 
number of different types of mesh adjustment and restructuring which are possible, 
too many to cover in depth here. Therefore, we will fully develop here only the most 
useful of the restructuring techniques, that of reconnection. We will merely list 
with a brief description the other techniques which we have considered. We wi!l 
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conclude this section with the illustration of a generalized mesh initialization which 
incorporates many of the adjustment and restructuring procedures. 

The trianguIar mesh can quickly become distorted through the migration of 
formerly neighboring vertices in the fluid flow. Without restructuring, the distorted 
mesh forces the computation of derivatives using nonneighboring vertices, and 
quickly leads to both computational instabilities and nonphysical behavior. This 
situation is typified by regions of long, narrow triangles bordering larger ones. This 
disparity in size also causes problems in that time-step errors become severe because 
of the short triangle sides. For extremely distorted triangles, triangle inversion 
becomes increasingly likely. CIearIy this disparity cannot be allowed to increase 
indefinitely, and some restructuring is needed. 

On a triangular grid, every nonboundary line uniquely specifies its two bordering 
triangles. These triangles form a quadrilateral for which the included line is drawn 
as one of two possible diagonals. Figure 4a illustrates a configuration in which the 
present diagonal should obviously be reconnected. In the algorithms employed here, 

RECONNECTION OF QUADRILATERAL DIAGONAL 

0.1 

DIAGONALS FOR INVERTED QUADRILATERAL 

b.) 

FIG. 4. Portions of a grid illustrating possible reconnections. (a) The dashed diagonal will be 
chosen for the shaded quadrilateral rather than the present, longer, diagonal. (b) The diagonal 
cannot be reconnected since the alternative diagonal, though shorter, lies outside the “inverted” 
quadrilateral. 
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the shortest diagonal for each quadrilateral is always chosen, unless reconnectim 
would produce too large a disparity in triangle areas. This is primarily a sagefuard 
against reconnecting across inverted quadrilaterals, which would produce negative 
triangle areas, as in Fig. 4b. It also hinders regions of sparse gridding due to an 
accumulation of area associated with a particular vertex. 

The reconnection algorithm could also be formulated to ensure diagonal dominance 
of the Poisson equation, as shown in Eq. (16). Since the sum of angles in a quadrilateral 
is 360”, only one pair of opposite angles can be greater than 180”. The diagonal can 

always be chosen to intersect those angles. While this algorithm is more desirable 
numerically, it does not always select the nearest neighbors. In all the simulations 
presented in this paper, only the former algorithm was used. 

In order to conserve momentum locally, triangle velocities after a reconnection 
must be constrained such that the momentum of the quadrilateral is unchanged, 
Furthermore, to keep the vorticity conserved, choices of triangle velocities are further 
restricted to those which leave the vorticity about each vertex unchanged. These 
requirements are sufficient to uniquely specify postreconnection velocities for the 
two new triangles. The algorithm resulting from these constraints is reversible, 
Replacing the reconnected diagonal with the original one returns the triangle velocities 
to their initial values. 

Further complications to the algorithms arise for reconnections affecting boundary 
vertex cells and by the alteration of a correction term which is carried to correct 
for residual errors in the pressure iteration. Of course, general bookkeeping of grid 
interconnections must also be updated. 

This reconnection procedure allows one row of triangles to slip smoothly by 
another row without having to adjust the Lagrangian vertex positions or velocities. 
In the corresponding fixed grid system, the triangles or rectangles bordering either side 
of the shear interface would soon become stretched unacceptably and a diffusive 
rezone procedure would have to be applied. The mesh reconnection described here 
is a much Less drastic change since the vertex positions can be left alone, The Gina1 
vertex velocities, the area-weighted averages of triangle velocities, will be consistent 
with conservation of vorticity and momentum, and any changes in divergence will be 
resolved through future pressure changes. For the special case of an unperturbed 
shear interface bordered by two symmetric layers of triangles: the vertex velocities 
would be left unchanged. 

In most cases the nonphysical movement of vertices can be avoided by adding and 
subtracting vertices where needed. For example, it may be necessary to increase 
resolution in some region where the flow is not naturally accumulating vertices. Such. 
a situation occurs in cylindrical coordinates when the fluid flow is converging on t’he 
aXis somewhere. Then the triangular zones become larger and larger in cross-sectional, 
area as the radial distance becomes smaller and smaller. Better resolution is clearly 
required. 

There are at least two ways of adding triangles to improve the resolution, triangle 
trisection. and side bisection. In side bisection a new vertex is inserted somewhere 
on a side which has become too long (for want of another position we can assume 
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the side is bisected). Lines from the opposing vertices to the new vertex are added, 
resulting finally in two new triangles, three new sides, and a new vertex. 

The values of physical variables at the new vertex must be determined by inter- 
polation, and hence some numerical smoothing is implied. The improvement in 
resolution arises because the bisected side becomes two sides and is no longer required 
to be straight. Thus, increasing radius of curvature can be met by increased resolution. 
Furthermore, there is no restriction implied by material interfaces. If any of the sides 
is an interface, the bisection can still be performed. 

A new vertex can also be added within a triangle in a restructuring we call trisection. 
Trisection alone is irrelevant because the three new small triangles are surrounded by 
a single large trian-le whose behavior is constrained just as if the new vertex were not 
there. To be effect; ye, trisection must be followed immediately by at least a single side 
reconnection. The result then is two new triangles, three new sides, and a new vertex 
which does not lie on the original quadrilateral diagonal. Physical variables at the 
new vertex are determined by interpolation just as in the case of side bisection. 

Subtracting vertices can be accomplished simply as the inverse of these two 
processes. For “inverse trisection,” a side is reconnected so that the resulting confi- 
guration has a single triangle which surrounds a vertex and three subtriangles. The 
interior vertex is then erased and two triangles and three sides disappear. 

Similarly, a vertex can be relocated until two of the sides emanating from it form 
a straight line. If these two sides belong to triangles which share common sides, the 
two interior sides which do not form a straight line can be erased and the two straight 
lines combined into a single line. Here again the starting configuration for “inverse 
side bisection” must be a quadrilateral with four triangles inside. If such a confi- 
guration does not exist, it can be forced by local reconnections. 

In subtracting triangles, care should again be taken to ensure conservation of the 
appropriate quantities on the new reduced mesh; this means careful monitoring of 
the interpolation formulas. 

Finally, there may arise other, less general, mesh restructuring which is required 
by a particular problem. For example, periodic boundary conditions are often 
imposed to restrict a computational region. However, flow out of the periodic region 
will carry the grid with it. It is necessary, therefore, to construct some means of 
restoring triangles which exit at one boundary as triangles entering the Aow at the 
opposing boundary. Since all physical variables remain the same for the “fictitious” 
triangle transter, the procedure is mere bookkeeping, albeit complicated, and does not 
alter the dynamics of the flow in any way. 

We conclude this section with a brief description of a generalized mesh initialization 
procedure. Clearly one could specify by hand all the initial vertex positions, all the 
sides, all the triangles, etc. This is both laborious and apt to be repeated time and again 
as the physical problem is changed. The process can be automated using general 
utility routines to connect vertices (and store the information in the appropriate 
mesh index lists), to bisect sides, to reconnect quadrilateral diagonals, and to adjust 
interior vertex locations. 

This routine requires as input an ordered set of boundary points surrounding the 
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RG. 5, The five stages of automatic initialization for a triangular mesh region with irregdar 
boundaries. 

desired region as in Fig. 5a, using cuts to reach an arbitrary number of interior 
subregions which are to be excluded. The initialization program can then proceed 
sequentially around the periphery of the region forming triangles from the specSed 
boundary points, until the region is completely tessellated, As shown in Fig. Sb, 
the interior subregions are automatically excluded through the inclusion of the cuts 
in the set of boundary points. 

All quadrilaterals are then repeatedly scanned, reconnecting diagonals until the 
shorter diagoual is connected for each quadrilateral in the mesh, as in Fig. 5c. To add 
interior vertices the longest remaining interior side is bisected repeatedly until either 
the required number of vertices has been added or all interior sides are smaller than 
a specified length. By reconnecting diagonals after each bisection, a fairly regular grid 
can be obtained, as in Fig. 5d. The reconnection and vertex adjustment routines are 
then used iteratively until a final relaxed mesh is obtained as in Fig. Se. 

This procedure can be repeated until each separate region has been filled with an 
appropriate number of vertices and the grid smoothed. It should be obvious that if a 
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more symmetric grid is desired (for example, for use in debugging the dynamics of a 
program), this same procedure can be used to force the grid to follow any desired 
configuration with a minimum of effort. 

Since the initialization begins with an ordered set of boundary vertices and ends 
with a tessellated region corresponding to a physically identifiable region, the appli- 
cation of boundary conditions and the storing of triangle and vertex physical variables 
can be handled smoothly. For boundaries which fall along straight-line segments, 
utility programs can be employed so that only corner positions, vertex spacing, and 
boundary conditions need be specified as input. 

5. FREE-SURFACE WAVES 

Stationary free-surface waves of varying amplitudes in a finite-depth incompressible 
fluid were chosen as the first test problem. The primitive equation formulation was 
used, and reconnection was disabled to test the fundamental algorithms. The linear 
theory is well understood and provides copious checks on the numerical results. 
Nonlinear theory, though less developed, also gives useful analytical results. Finally, 
the long-time solutions are well defined in the linear case yielding a convenient test 
of the code’s stability. 

For these calculations a grid was constructed to represent a homogeneous incom- 
pressible fluid of finite depth. Periodic boundary conditions were used at the sides 
of the region, permitting the examination of an infinite wave train while restricting 
the computational region to one wavelength. At the rigid bottom, normal velocities 
must be identically zero. In this code this boundary condition is met by initializing 
normal velocities to zero and then choosing values of P at the lower boundary which 
cause normal accelerations to vanish. The pressure at the free surface is taken to be 
zero. 

The waves are generated by specifying an impulsive sinusoidal pressure distribution 
at the free surface at t = 0. For all later times the free-surface pressure remains zero. 
The accuracy of the numerical solutions is tested through the shape, amplitude, and 
period of the generated waves. 

5.1. Acczwacq 

The linear theory yields an expression for the period of a standing wave in a fluid 
of finite depth as 

T = 23~ [gk tanh(Mz)]-l’“, (30) 

where X- = 2~r/A, g is gravity, and h is the undistributed fluid depth. For our tests 
X = 2.5 cm and h = 1.0 cm with g = 980 cm”/sec, which yields r = 0.12744 sec. 

In the linear theory the wave period is independent of the wave amplitude; but the 
theory is valid only when the ratio of wave amplitude to wavelength and the ratio 
of wave amplitude to depth are both small. For our calculations of wave period, these 
ratios were A/X = 0.0269 and A/h = 0.0672. For these values we might expect some 
slight nonlinear effects in the wave shape. However, as shown below, at this value of 
A/h the nonlinear change in period should be negligible. 
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Figure 6 presents the numerically determined wave periods for different grid 
resolutions. The different mesh configurations are shown in the insets to the right of 
Fig. 6. To obtain a value for the period which had at least four significant figures for 
each of these cases, without resorting to computer simulations lasting thousands of 
time steps, we interpolated between time steps for our time measurements. For a 
standing wave, times can be determined most precisely as the amplitude passes 
through zero, when the free-surface velocities are greatest. We defined the numerical 
value of the wave period by a least-squares fit to such time determinations over 
computations lasting many wave periods. The error bars indicate the aggregate error 
in the period due to the uncertainty in the time localization. It includes an estimate 
of systematic error due to a possible bias in selecting the precise time when the 
amplitude was exactly zero. 

We found the numerical period in the limiting case of an infinitesimally small 
mesh spacing by extrapolation, using the function 

7 = a(As)z + Tc . 

The values of the parameters a and T, are determined by a least-squares fit to the 
calculated wave periods, 7. The value for the period is 7, = 0.12726 & 0.00046, 
a number within 0.15 “/< of the theoretical linear value. 

Contributions to error in 7 from time-step size errors have been minimized by 
reducing the time step when the mesh size is reduced. However, the time step was not 
increased beyond 0.004 set, or roughly eight time steps per quarter-period. In basically 
second-order systems the Courant condition guarantees that time-step error terms are 
smaller than spatial derivative error terms because the nondimensional time step 
must be smaller than the space step for stability. This is demonstrated by the parabolic 
nature of the error curve, verified at six widely different mesh sizes. 

For waves of finite amplitude, the wave profile should have the form [12] 

( 1 
J’ = c(ka) - a + 32. k”a3 - & k4a5) cos kx 

+ (i ka” - gj k3a”) cos 2kx - (f Pa3 - z k4a5) cos 3k.u 

+ i k3a-” cos 4kx - g ksa5 cos 5kx + .a’, (31) 

where the constant term c(ka) is also a function of ka. 
In the limit of small ka, this expression reverts to JJ = h - a cos kx, exactly the 

linear result. The theoretical results then predict a smooth transition from a sinusoidal 
to a nearly trochoidal form with increasing amplitude. Our results also corroborate 
these predictions, as shown in Fig. 7. The curves in this figure have been normalized 
through the amplitudes of the initial perturbing pressure distributions (A,). Insets at 
the right of Fig. 7 illustrate the actual wave heights achieved for each case. 

A more detailed comparison is shown in Fig. 8 which includes a superposition of 
the theoretical predictions (Eq. (31)) and the numerical results for the A, = 3 case 
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s 

X 

FIG. 7. Transition of the wave profile from the linear to the nonlinear regime. The wave profles 
are normalized by the amplitudes of the initial pressure perturbations P = A, sin ks. Note the 
compressed scale in the x-direction for the insets. 
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of Fig. 7. Although there are slight differences in the wave shape, they are not sur- 
prising since Eq. (31) is derived in the limit of infinite depth. As the insets in Fig. 7 
show, the wave trough in this case is a significant fraction of the depth. 

The waves shown in Fig. 7 were all generated by an initial sine wave pressure 
distribution with only the amplitude of the impulse varying from case to case. 
The waves are labeled by the impulse amplitude (A,) in each case. The wave amplitudes 
achieved, a, , defined as $( ymaX - J’min), are given in Table I. 

TABLE I 

Comparison of Numerical Results with Linear and Noriiinear Theory.” 

1 0.0168 0.01761 -4.6 ;(, 0.01681 0 Cl.’ 0.02 7; 0‘004 “/d 
2 0.0336 0.03522 -4.6 74 0.03362 0; 0.09 7; 0.016 ?’ /Cl 
4 0.0672 0.07044 -4.6 :/, 0.06724 0 Y/ 6.38 7; 0.062 ‘./ : G 
8 0.1338 0.14088 -5.0% 0.13447 --0.;;< 1.6% 0.25 7; 

16 0.2620 0.28176 --7 O”/’ . ro 0.26894 -3.6 “;‘, 6.6 7; 1.01 ;< 

IE A, = EPQ, the product of the amplitude of the pressure perturbation S’ and the time step 8k 

The linear theory predicts an amplitude 

Using the theoretical value for the period we have 

a, = O.O1761A,, (33) 

where we have included an additional factor of 0.35, to be explained below. As can be 
seen from Table I, the numerically predicted amplitudes deviate from the linear theory 
by 4.6 % at small amplitudes to 7.0 % at large amplitudes. However, the size of the 
mesh introduces a finite-difference truncation error in the period, as determined by 
Fig. 6. If we use this value a, for the period, instead of the value for an infinitely small 
mesh, we obtain 

a, = O.O1681A, (34) 

as shown in Table I. The errors are seen to be negligibly small for the first three cases 
and deviate from the linear prediction only for the obviously nonlinear cases. These 
numbers, coupled with the observation that there is no measurable increase in the 
period up to the A, = 8 case and an increase in period for A, = 8 and 16, indicate 
that the A, = 4 case, used in constructing Fig. 6, is indeed a good approximatioa 
to the linear period. A further check that the percentage deviation for the A, = 8 and 
16 cases is indeed due to nonlinear effects can be made from theoretical calculations 
of the period for the nonlinear case. Tadjbakhsh and Keller 1131 determine to third 
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order in n/h that the period should increase if the initial fluid depth h is larger than 
0.17h. In our case the ratio h/h = 0.4, and so the increase in period which is observed 
is indeed reasonable. Penney and Price [ 121 also predict an increase in their expansion 
to fifth order for the case of infinite depth. The change in period predicted by each of 
these theories is included in Table I, as ST= and 8~~ , respectively, for comparison 
with the amplitude results. The percentage change should be equivalent since the 
amplitude achieved in Eq. (32) is inversely proportional to the period. As can be seen 
from Table I, the general trend of the agreement is good, with the numerical results 
lying intermediate between the two theories. 

5.2. Stability, 

In numerical integrations, convergence to the correct solutions is always incomplete 
and leaves a residual error. To ensure that this residual error does not accumulate 
significantly, affecting both accuracy and stability of the code, it has been included 
explicitly as “negative feedback.” For the pressure iteration in which the velocity 
divergence around a mesh point is iterated to zero, (V, - V)/O t is used as a residual 
correction, where VC is the initial (t = 0) volume of the cell and I/ is its current 
(slightly incorrect) volume. For pressures at the bottom of the fluid, a vI source term 
is added to compensate for accelerations through pressure gradient forces perpen- 
dicular to the rigid boundary which have accumulated due to incomplete convergence. 

While the feedback mechanisms affect stability indirectly, there exists a need for 
more direct control of numerical instability. As mentioned above, the divergence is 
zero only at full time steps and, therefore, follows a time history as shown in Fig. 9. 

h/l/l~, 
t-L 

I 
t-y 

1 ‘“t I 
t t+t tt3t 

A) CENTERED TIME SPLITTING 

I 
t-(I& : 

I I 
t-&z t+kx t+:t 

E) FORWARD TIME SPLITTING 

l+.x 9. The time development of the divergence for two differencing schemes. 
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WAVE AT t = r/4 t = 1OT -#- T/ 

= 11 T + r/4 t =12r + r/4 

FIG. 10. An example of the growth of numerical instability. 

The discontinuous change in divergence results from the linear transformation at 
t - @t, while the linear change reflects the pressure iteration forcing the divergence 
to zero at t and t - 6t. As seen from Fig. 9, this scheme is lnarginally stable with the 
absolute value of the divergence at t + @t equal to that at t - &3t. However, moving 
the “half” time step slightly forward of center ensures that the divergence at P + EL 
will be smaller and, hence, cannot accumulate secularly. However, this is done at the 
sacrifice of perfect time reversibility of the algorithm. It is the latter scheme which 
was used throughout this test, since many periods were needed for accurate statistics. 
For example, 12 complete wave periods were taken for the four coarser grids in Fig. 6. 
The forward shift (a = 0.35 in Fig. 9) is also the source of the 0.35 factor alluded to 

j81/3I/Z-$ 
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previously. Since the impulse pressure is applied only for the first “half” time step, 
shortening this time also reduced the amplitude of the impulse. 

As was mentioned above, long-time integrations are possible with these algorithms, 
with runs typically 500 time steps. For the best cases, no discernible changes of shapes, 
amplitudes, or periods of the waves occur until t w 157. Figure 10 illustrates the type 
of instability presently found, here evident at t = 127. At t = 10~ and t = 11 ‘T there 
is a slight flattening of the crests of the waves presaging the more violent onset of 
instability at t = 127. This behavior reflects an accumulation of truncation error 
which initially only perturbs the grid near the surface, but which grows in time until 
the grid is sufficiently displaced locally to finally become Courant unstable. It is not 
surprising that the instability appears. Rather, it is surprising that its appearance is so 
retarded despite ample encouragement through the suppression of numerical averaging 
and artificial viscosity. It should also be noted that there is no evidence of nonlinear 
alternating error even after the instability is well developed, as was suggested [5] for 
the triangular grid. 

In summary, the free-surface wave test has shown the code to have both excellent 
accuracy and stability. The detailed examination of its convergence has further shown 
the code to be effectively second order. Finally, good stability can be achieved without 
artificial viscosity or spatial numerical averaging. 

6. THE KELVIN-HELMHOLTZ INSTABILITY 

The dynamics of a perturbed shear layer near a free surface for an inviscid, incom- 
pressible fluid is a good test of the numerical techniques devised for the reconnections. 
The techniques presented here enable us to trace the evolution of the layer from the 
initial perturbations, through their linear stages of growth, into the manifestly non- 
linear growth of Kelvin-Helmholtz billows and beyond, into the formation of a 
turbulent layer. The Kelvin-Helmholtz instability is an appropriate vehicle for this 
test since it has received a great deal of attention both in homogeneous and stratified 
flows. It remains a focus for research at present, partially because of the complexity 
involved in following its development even numerically, particularly at high Reynolds 
numbers, and also because areas such as interactions with nearby free surfaces have 
remained almost totally unexplored. 

6.1. Shear Layer Dynamics 

The complete evolution of a shear layer near the free surface of a fluid must be 
calculated numerically since no analytic, closed-form solutions exist. However, the 
early growth should parallel that predicted by linear theory until the free surface 
becomes sufficiently deformed to effect perturbations in the shear layer. We will use 
analytical results from the linear theory as developed by Holmboe [14]. The geometry 
is that of a finite shear layer bounded by equal outer layers of irrotational fluid. 

As shown in Fig. 11, for perturbations of the shear layer with wavelengths less than 
4.9 times the thickness of the layer, deformations on the upper and lower boundaries 
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FIG. I I. The development of a symmetric wave in a homogeneous shear layer. 

travel with the flow (to the right and left, respectively) with oscillating phase speed 
and amplitude. For wavelengths greater than 4.9 times the layer thickness, the 
deformations travel to a stationary state of exponential growth. The phase of the 
stationary state is given by 

tan’ u, _ (1 - f%> 
(1 - fla> ’ 

where 

and 

II,, (I - eF)/kd, 

nb 1.. (1 I. eckd)/kd. 

(35) 

The growth rate, n, for this state is 

(n/kLr)2 7 (1 - na)(nb - I): i 36) 

where 2U is the change in velocity over the layer of width cf, and k ..-. 2~~jh. For 
x > d, kd < 1 and IZ -+ Uk; i.e., the shear layer behaves like a vortex sheet. The 
wavelength of maximum growth (dn/dk = 0) is given by A,,, -.= 7.9d. 
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For a homogeneous shear layer, the main difference between the behavior of a 
shear layer and a vortex sheet is therefore a short-wavelength cutoff for growth of an 
initial perturbation. For wavelengths longer than the cutoff, the instability grows in a 
mode in which the upper and lower boundaries of the layer remain phase Iocked and 
the growth proceeds at a rate generally smaller than that for a vortex sheet. While the 
vorticity associated with the shear layer remains constant, its distribution changes, 
and becomes more clustered as the amplitude of the stationary state increases (Fig. 11). 

The behavior of a stratified shear layer depends heavily on the geometry of the layer 
and the surrounding irrotational layers and on the functional form of the density 
within the layer. For a constant density gradient over the layer, Goldstein [15] found 
that if the outer layers were of infinite depth, the wavelengths accessible to the phase- 
locked growth mode were restricted to a spectral band which shifted to shorter 
wavelengths with increasing Richardson number. Holmboe found simliar restrictions 
for this mode when the depth of the symmetric outer layers is h; 

coth kh + coth J-kd > (I + J)/(+kd) > coth kh + tanh +kd, (37) 

where J is the Richardson number, 

J = gApd/p(AU)2. 

Linear analysis of perturbations of shear layers in general predicts a phase-locked 
growth for unstable waves, with the growth rates and allowed wavenumbers deter- 
mined by the details of the shear layer and its stratification. Although the linear theory 
is inapplicable for later growth of the layer, the principal mechanism for the nonlinear 
growth is determined. 

As shown in Fig. 12, at the end of the linear stage of growth the vorticity has been 
concentrated in a series of tilted bands and depleted from the sheared regions between 
them. We will call these concentrations of vorticity ‘icores” and the regions of strong 
shear connecting them the “braids.” As the vorticity increases in the cores: they rotate 
more strongly and further stretch the braids, transferring even more vorticity to the 
cores. As the roll-up continues, the portions of the braids nearest the cores are 
wound onto the cores also, accelerating the vorticity transfer. For a homogeneous 
fluid, this process could continue until the braids are totally depleted of vorticity, 
leaving the core, in the absence of other instabilities, rotating about an axis at the 
center of the layer. 

For a stratified fluid, the vorticity in the braids increases with tilt, and stretching 
intensifies the local density gradients there. Vorticity is also generated in the cores in 
such a way as to keep the total vorticity per wavelength constant. 

In either case, the Kelvin-Helmholtz billows which are formed increase in size due 
to the entrainment of surrounding fluid. Turbulence begins in the center of the core 
and gradually increases as the entrainment progresses. For stratified fluids, the braids 
and the edges of the cores become regions of intense density gradients along which 
smaller scale perturbations may appear. Under the combined influence of shear, 
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END OF LiNEAR GROWTH WAVE ~R~A~~NG 

ROLL-UP AND ENTRAINMENT BILLOWS WITH CORE TURBULENCE 

FIG. 12. The formation of a Kelvin-Helmholtz billow from a perturbed shear layer. In the 
homogeneous case the vorticity in the shaded area remains constant throughout the different stages 
of growth. For stably stratified layers, vorticity is generated and depleted baroclinically along the 
deformed layer according to its tilt. 

strong density gradients, increasing billow size due to entrainment, and a growing 
central turbulence, the billows eventually coalesce into a layer which becomes nearly 
isotropically turbulent. 

Surprisingly, at times long in comparison with the initial growth rate times, this 
turbulent layer is not without structure. Microlayers appear which, by their inclination 
to the original shear layer, can be shown to be associated with the original billows [16], 
despite their subsequent shearing and coalescence. The mechanism for the retention 
of the identity of the original billows long after the formation of the turbulent Iayer 
has remained obscure. 

6.2. Numerical Solutions 

Figure 13 illustrates the linear development of a shear layer near a free surface as 
calculated by SPLISH. The insets in the figure are taken from the computer calcu- 
lations and show the location of marker particles. The initial flow is specified by the 
triangle velocities which are chosen to be constant in each layer of fluid. We have given 
a velocity U :- 5 cm/set (to the right) to all triangles above the central discontinuity 
and U 7: -5 cm/set for all triangles below it. The time step is 6t = 0.001 sec. In 
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SYMMETRlC WAVE FOR d : 0.1, ,4, -- .02 
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Fro. 13. Growth rate of the perturbation amplitude A and the phase of the stationary state 0 
for n = 0.1 and initial perturbation amplitude A, .= 0.02. The mesh is I1 x 11 and the time step 
61 : 0.001 set, or the transit time between vertices is 20 time steps in the irrotational layers. 
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terms of triangle velocities, the shear layer can then be localized to exactly the 
discontinuity. However, the layer will behave as if it were one cell wide, simply because 
because the equations governing its motion are differenced over a grid. 

A sinusoidal perturbation is given to the central discontinuity at t == 0 with an 
amphtude equal to 2 % of the fluid depth or 20 36 of the shear layer. The perturbation 
was exaggerated to help visualize the flow in its early stages, but because of the rather 
large amplitude, nonlinear effects will be evident early in the simulation. No effort has 
been made to impose velocity fields consistent with these initial deformations since 
the velocities will adjust themselves self-consistently after a short period of time. 
For smait perturbations, these fluctuations are not large, and do not significantly 
affect the dynamics. It should be emphasized, though, that the initial conditions are 
mt eigensolutions for a given layer perturbation, but merely represent an instan- 
taneous deformation at the center of the layer. 

As shown in Fig. 13, the numerical calculation determines the stationary state to be 
at CJ, = 109.5’ or ct = -70.5” and gives a growth rate of IZ = 19.6. From Eqs. (35) 
and (36) for d = 0.1 cm, h = 1.0 cm, and U = 5 cmisec, the linear theory predicts 
Go = -67.5? and n = 19.13, in quite good agreement with the numerical rest&. 
Roughly half of the small discrepancy is due to nonlinear effects, evident by the 
peaking in the last inset, and the rest is due to the finite resolution of the grid. 

To check whether this agreement was merely fortuitous, the simulation was rerun 
with half the initial perturbation. The numerical results were uS = -69.5” and 
iz = 19.2, even closer to the predictions of the linear theory, as should be expected. 

We have also performed this test in the limiting case of letting the perturbation 
equal zero. In this case the shear layer is in an unstable equilibrium, and any error 
in the assignment of postreconnection velocities should be mirrored in a similarly 
exponentially growing disturbance. This test has been run for 500 time steps with no 
changes in the grid aside from the initial shear (vertical grid positions indicate errors 
610-j for a single precision calculation) and 8t increased to 0.004 sec. The final grid 
looks exactly as it did initially, yet each vertex in the irrotational fluid above +he 
shear layer traversed the entire grid ten times. 

Figure 14 presents another check on the accuracy of the computer calculations in the 
linear regime. Here the wavelength of the initial perturbation is increased to h = ! .5 cm 
instead of /\ = 1.0 cm as in the previous simulations. However, the half-wavelength 
wave, with X = 0.75 cm has a substantially larger growth rate. This is because 
;\ = 7.5d and, as shown above, this is quite near the wavelength for maximum growth 
for the layer. h = 7.9d. Physically, we would expect that such a layer would develo? 
through the half-wavelength mode due to small random perturbations. 

Numerically: we expect the same behavior since the initial perturbation is not an 
eigensolution for the !ayer. As shown in Fig. 14, by i = 0.16 set the half-wavelength 
mode is discernible. At t = 0.22 set the layer is clearly predominantly perturbed 
by the half-wavelength disturbance and its rapid growth clearly carries the laqier‘s 
development into the nonlinear regime in just 0.03 set more (t == 0.30 set). 

Figure 15 presents the results of calculations for the nonlinear growth of a shear 
layer into a Kelvin-Helmholtz billow. This simulation is a continuation of t.he 
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linear stages shown in Fig. 13. The lower four insets present vorticity contours.at the 
same times as the marker particles displayed above. Since the initial shear layer for 
this problem is one cell wide with constant velocities above and below the layer, 
those cells deGning the layer will have a uniform vorticity. In the insets the vorticity 
is contoured over the mesh triangles. The total width of the layer therefore appears 
twice as large since the contours extend to neighboring vertices. Because the algorithms 
identically conserve vorticity; those cells initially in the layer always have the same 
vorticity, but the distribution of these cells will change. 

FIG. 14. Growth of a favored harmonic of the initial perturbation. Here d = 0.1, A, = 0.01, 
61 = 0.001, and the mesh is 11 x 11. The initial perturbation of wavelength h = 1.5 has a theoretic- 
ally predicted growth rate of n = 15.4. Its first harmonic has a more favorable growth rate, n = 20.1. 
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In the first inset the vorticity has begun to cluster into bands with an accompanying 
thinning and stretching of vorticity outside the bands. Due to our finite resolution, 
the thinning in this plot is evidenced more by the density of vorticity-carrying vertices 
than by an actual decrease in width of the band. The enlarged band tilts and breaks, 
entraining the surrounding fluid. The roll-up and gathering-in of vorticity is shown by 
the core rotation as well as by the movement of two vorticity-carrying cells left in the 
braids, In the last frame the Kelvin-Helmholtz billow has matured and continues 
to wind in the remaining vorticity. 

The marker particles carry complementary information. The nonlinear peaking 
at the end of linear growth rapidly leads to breaking as the band tilts. In finer resolution 
this breaking at the band edges would be represented by small vortices. In simulations 
using smaller initial perturbations these vortices are replaced by a much. more uniform 
roll-up about the central core. Entrainment in those cases is always directed toward 
the center of the core. The smaller scale motion shown here is more effective in 
entraining fluid. The billow grows more rapidly through the increased transfer of 
fluid to the core by the additional entrainment of the small vortices. 

In these plots the stretching and thinning of the braids is much more evident, 
particularly as the billow matures and continues to wind the braid around the core. 
The kinks in the briads at the locations of the remaining vorticity are not physical, 
but are due to finite resolution. However, they do not represent a numerical instability 
since these perturbations do not increase with time. 

The details of these simulations, particularly those with smaller initial perturbations, 
are reminiscent of the results obtained by Patnaik et al. [17] in their beautifully 
resolved simulations for which at higher Reynolds numbers the core rotation becomes 
rapid. The primary differences appear to be the result of our nearly four times coarser 
gridding. For example, none of their simulations has a we&developed braid defor- 
mation, even at their highest Reynolds numbers, which confirms that their origin 
here is due to finite resolution. 

Of course, the main difference between these calculations and previous ones is the 
presence of a free surface near the shear layer. As shown in Fig. 15, the free surface 
is lowest directly above the billow and highest over the braids. Wave steepening is 
driven by the fluid entrainment into the billow below. The steepest portion of the 
surface wave remains above the strongest vertical velocities of the entraining fluid, 
moving to the right as the billow grows. The details of the shape of the surface wave 
are strongly coupled to the size of the billow and its distance below the free surface. 
A more complete discussion of its behavior can be found in Ref. [7]. 

Throughout this section all examples have used homogeneous shear layers, and 
connotations such as “braids” have been used on the basis of path lines for Lagrangian 
particles alone. With the addition of stratification, such entities become loci for 
changing density gradients, and may in themselves now baroclinicallygenerate vorticity. 
Further checks on the accuracy of the code have been obtained by including stratifi- 
cation [7] and comparing the results with the predictions of Eq. (37). For all simu- 
lations the results are in agreement with theory. For unstable stratified layers the 
roll-up is slower, but proceeds with vorticity generation in the braids and depletion 
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FIG. 16. Late development of the shear layer. For this calcuiation d 7.: 0.167, & 7: 0.02, with 
iir = 0.004 set for a 7 x 7 mesh, Gaps in the marker particles, panicuIarly at the free surface and 
rigid bottom, are artificia1 and are due to round-off in the low-precision marker routines. 



210 FRITTS AND BORIS 

in the core. For a stabilized layer the deformation collapses and the layer undergoes 
a standing oscillation about its mean position. 

The computer simulations therefore seem to agree in all respects with predictions 
of both linear and nonlinear theory. However, there is the added advantage in that the 
simulations can be extended economically to longer times. In fact, we have performed 
calculations at coarser resolutions which have followed the shearing of billows into 
their coalescence with neighboring billows. A sample calculation is illustrated in 
Fig. 16. At t = 0.356 the entire outer edge of the billow is ringed by former braid 
wound onto the billow, and in a stratified fluid would be a locus for high-density 
gradients. Prior to this time, the billow has already sheared and it-rotational fluid has 
been trapped between the spreading billow and the braid, accentuating the stretching 
of the braid even more. As shown at t = 0.396 and t = 0.416, the sheared billow 
continues to overlap the braid in this region, and by t = 0.436, yet another layer of 
irrotational fluid is about to be pressed against this already twice overlaid portion 
of the braid. Although the marker density is quite small at later times, it is possible 
to see that at t = 0.456 and t = 0.476 this portion of braid is still intact and further 
stretched, being merely overlaid by the shearing billow in successive layers of turbulent 
and irrotational fluid. 

This development is mirrored in the vorticity contours. It is immediately obvious 
that the vorticity-carrying vertices perform localized rotations during the shear, 
and do not migrate horizontally. By transposing an image of the braid locus onto the 
contours and tracing the movement of individual vertices, it can be seen that the 
braid effectively divides the fluid into separate regions, despite the increasingly 
isotropic turbulence throughout other regions of the sheared billow. 

The long-time simulations therefore indicate that portions of the braid survive 
well into the turbulent regime, despite the fragmentation of the billows which created 
them. These extremely thinned and overlaid braids inhibit motion across themselves, 
and serve as an excellent locus for the building of the microlayers seen in late-time 
turbulent regions as noted by Thorpe [16]. 

7. CONCLUSIONS 

In this paper we have described an entire series of techniques and algorithms for 
using a Lagrangian two-dimensional mesh of triangles to represent and solve free- 
surface problems in incompressible hydrodynamics. The results of our research in 
this area have been incorporated into the free-surface hydrodynamics code SPLISH, 
which was used in calculations to test the accuracy and stability of the algorithms. 
These results on the problem of free-surface waves have shown that the code is an 
extremely accurate, second-order code and has good convergence. It also has the 
ability to calculate long-time solutions accurately without the benefit of artificial 
viscosity or numerical averaging. 

The simulations of the Kelvin-Helmholtz instability have shown that it is indeed 
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possible to devise accurate mesh reconnection algorithms which permit long-time 
solutions even in the presence of strong shear. Here too, the numerical solutions have 
been found to be accurate, agreeing with both linear and nonlinear theory for both 
homogeneous and stratified flow. It has been encouraging that even coarsely gridded 
problems such as these not only preserve the details of previous higher resolution, 
Eulerian calculations, but even elucidate current problems such as the behavior of 
free surfaces near a shear layer and the development of microlayers in turbulent 
regions formed by coalescing Kelvin-Helmholtz billows. 

Our experience with this code is by no means extensive, however. Prior development 
through LINUS2, a triangular code for electromagnetically imploded liquid metal 
rings, and subsequent extensions, such as TORUS2, an I’-? quasistatic MHD code 
for calculating plasma equilibria in tokamaks, have led to further experience in how 
to properly difference equations over a triangular mesh. Yet in all cases we have 
proceeded only with those schemes which seemed most productive for the immediate 
future. In this paper we have also tried to illuminate some of the pitfalls. It is only 
through cumulative experience such as this that an understanding of hydrodynamics 
Cng Lagrangian triangular meshes will begin to be complete. 

APPENDIX: TOPOLOGICAL CONSTRAINTS 

Since little is known about the convergence of Lagrangian algorithms differenced 
over triangular meshes, it is important to obtain a feel for the restrictions that the 
grid itself imposes on the physical solutions to a problem. Perhaps the most funda- 
mental restriction is the relation between the number of vertices and the number of 
triangles, the “counting problem” mentioned in the text and derived in detail below. 
Other constraints may be more subtle, such as the case presented here in which local 
grid structures can force nonlocal behavior onto the physical equations which are 
differenced over the mesh. 

To define the “counting problem” we can consider first the case of a rectanguiar 
computational region as shown in Fig. 17a. The derivation was pointed out to us by 
Dr. Glynn Roberts of Science Applications, Inc. We want to find the sum of the 
angles subtended by each vertex. For an interior vertex, we have simply 

For vertices on the boundary, but not at a corner 
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FIG. 17. (a) A rectangular computational region tesselated by triangles. (b) Section of a triangular 
mesh. 

while, for corner vertices, 

Therefore, the total is the sum of Eqs. (Al)-(A3) 

z, 4 = (NV - N,,) 25T -t (N,, - 4)71. + 4&r), (A4) 

where N, is the total number of vertices, and NVb the number of boundary vertices. 
Simplifying, 

c 4 = 27rN, - rrNn, - 27~. (0 
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This sum can be calculated another way, through the triangles in the mesh? 

where Nt is the total number of triangles. Equating Eqs. (AS) and (A6) gives the 
result 

N, = 2N, - N,” - 2. (A;) 

The equations in the text follow immediately. If there are no interior vertices, N,; = !2icb 
and N: = N,, - 2. If the mesh is finely tesselated, 1v, > NL’b and Ni -. 2N, . 

For an arbitrarily shaped boundary, the proof is essentially the same. Equation (PA) 
is replaced by 

c Q == (NC - NJ 27i t (N,, - /7)77 + (3 - I),> (.4.8) 

where 17 is now the number of corner vertices, and (B - 2)~ is just the sum of interior 
angles of a polygon of order n. 

To illustrate the influence of the topology of the grid on the physical solution, 
we will use the example of an isolated vortex in an incomprsesib!e fluid. We would 
like to determine if the mesh itself allows such a vortex to persist whiie the fluid 
remains divergence free. 

Figure 17b illustrates the problem. We define a point vortex at the central vertex c, 
and further assume that the peripheral vertices n - o are all fixed. We would like 
to know if it is possible, under these restrictions, to move vertices I --f 6 in a manner 
consistent wit!1 divergence-free flow about a central vortex. Clearly, since the periphery 
is fixed: the total area is conserved, and so at least in this s,ense the flow is divergence 
free. We would like to be more restrictive, however, and see if rhe area abcut each 
vertex can be conserved. We can use the usual definition of the vertex cell as one-third 
of the area of all triangles including the vertex. 

To illustrate, assume vertex 2 is moved first. To conserve the area of vertex ceii$ 
vertex 1 must be moved in the same sense as vertex 2 and in such a way as to conserve 
the combined areas of triangles .42gf, d 12f, and A le$ Once the velocity of 2 is chosen, 
there exists just one possibility for the velocity of vertex 1; it must be parallel to the 
line @and of a magnitude such that the area of vertex cell Sis conserved. It must be 
parallel to C@ to conserve the area of quadrilateral ldef, which assures the constancy 
of cell e. Motion parallel to &assures the area of triangle A lcifis conserved. Triangle 
ddef is conserved trivially since all its vertices are fixed. 

Once the velocity of vertex 1 has been so chosen, the velocity of vertex 6 is found 
in a similar manner, and so on around the central vertex c. In this way vertices i 
through 6 could be moved conserving the area of all peripheral cells. Unfortutnately: 
the scheme fails at vertex 5. The velocity of 5 is constrained to be parallel to I:! to 
conserve the area of vertex cell ?FZ, and parallel to AX to conserve cell I’s area. There- 
fore, it is possible to define a velocity field consistent with the desired motion only if 
all the vertices have 6 or fewer connections. It is not possible if any of the vertices 
i + 6 has seven or more connections. 
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The local topology of the grid has forced a nonlocal character onto our solution. 
If a system of algorithms is used in which the vertex velocities are found iteratively 
such that cell areas are conserved, vertex I or nz must move also. If, further, the 
vorticity is advanced in a similar manner, the conservation of vorticity about c is in 
conflict with the divergence iteration, and extremely slow convergence will result. 
Therefore, as discussed in the text, improved convergence can be achieved only by 
conserving one of these quantities by construction. In the 4-5 formalism, the flow is 
divergence free by construction, whereas for the P-V formalism, vorticity is exactly 
conserved by construction. Iterations of vertex variables to conserve the remaining 
quantity will still be nonlocal, but will converge much faster than schemes in which 
conservation of both quantities is attempted by iteration. 

The implications of this proof are not restricted to triangular meshes since any 
quadrilateral mesh can be reduced to a triangular mesh by drawing diagonals. Viewed 
in this light, the advantage of the triangular mesh is to explicitly indicate which 
diagonal should be used for more accurate computation. This improved accuracy 
can be obtained in a quadrilateral mesh by a nonlinear correction term, but it would 
fail for exactly the same reasons as given here; it would emphasize the connection 
which forces nonlocality. In other words, in the triangular mesh this problem could 
presumably be avoided by forcing only six connections or less per vertex; i.e., re- 
connect diagonal km versus 15. This would remove the nonlocal character, but at the 
expense of a less accurate solution. 
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